tabel triogonomtri
tabel triogonomtri
nih contoh soal trigonometri
1. Tunjukan bahwa cos 72° + sin 72°.tan 36° = 1 !
2. Tunjukan bahawa :
a. sin 3x = sin x – 4 sin^3 x
b. cos 3x = 4 cos^3 x – 3 cos x
3. Tanpa memakai kalkulator dan table, hitunglah:
a. 2 sin 75° cos 75°
b. ½ - sin^2 15°
4. Jika tan α = ½ dan cos β = ¼, α dan β sudut lancip, hitunglah nilai:
a. tan 2α
b. tan 2β
c. tan (2α + β)
d. tan (α - 2β)
jawabanya.
cos 72° + sin 72°.tan 36° = 1
Dari ruas kiri :
cos 72° + sin 72°.tan 36°
= cos 72° + (sin 72°.sin 36°) / cos 36°
= (cos 72°.cos 36° + sin 72°.sin 36°) / cos 36°
= cos (72° - 36°) / cos 36°
= cos 36° / cos 36°
= 1 (terbukti)
Tolong soal nomor 2 a di cek ulang, mungkin soalnya sin 3x = 3 sin x - 4 sin³ x
2.
a. sin 3x = 3 sin x – 4 sin³ x
Dari ruas kiri
sin 3x
= sin (x + 2x)
= sin x cos 2x + cos x sin 2x
= sin x (1 - 2 sin² x) + cos x (2 sin x cos x)
= sin x - 2 sin³ x + 2 sin x cos² x
= sin x - 2 sin³ x + 2 sin x (1 - sin² x)
= sin x - 2 sin³ x + 2 sin x - 2 sin³ x
= 3 sin x - 4 sin³ x (terbukti)
b. cos 3x = 4 cos³ x – 3 cos x
Dari ruas kiri
cos 3x
= cos (x + 2x)
= cos x cos 2x - sin x sin 2x
= cos x (2 cos² x - 1) - sin x (2 sin x cos x)
= 2 cos³ x - cos x - 2 sin² x cos x
= 2 cos³ x - cos x - 2 (1 - cos² x) cos x
= 2 cos³ x - cos x - 2 cos x (1 - cos² x)
= 2 cos³ x - cos x - 2 cos x + 2 cos³ x
= 4 cos³ x - 3 cos x (terbukti)
3.
a. 2 sin 75° cos 75° = sin 2(75°) = sin 150° = ½
b. ½ - sin² 15°
= ½ - {1 - cos 2(15°)} / 2
= ½ - ½ + ½ cos 30°
= ½ cos 30°
= ¼√3
Dari ruas kiri :
cos 72° + sin 72°.tan 36°
= cos 72° + (sin 72°.sin 36°) / cos 36°
= (cos 72°.cos 36° + sin 72°.sin 36°) / cos 36°
= cos (72° - 36°) / cos 36°
= cos 36° / cos 36°
= 1 (terbukti)
Tolong soal nomor 2 a di cek ulang, mungkin soalnya sin 3x = 3 sin x - 4 sin³ x
2.
a. sin 3x = 3 sin x – 4 sin³ x
Dari ruas kiri
sin 3x
= sin (x + 2x)
= sin x cos 2x + cos x sin 2x
= sin x (1 - 2 sin² x) + cos x (2 sin x cos x)
= sin x - 2 sin³ x + 2 sin x cos² x
= sin x - 2 sin³ x + 2 sin x (1 - sin² x)
= sin x - 2 sin³ x + 2 sin x - 2 sin³ x
= 3 sin x - 4 sin³ x (terbukti)
b. cos 3x = 4 cos³ x – 3 cos x
Dari ruas kiri
cos 3x
= cos (x + 2x)
= cos x cos 2x - sin x sin 2x
= cos x (2 cos² x - 1) - sin x (2 sin x cos x)
= 2 cos³ x - cos x - 2 sin² x cos x
= 2 cos³ x - cos x - 2 (1 - cos² x) cos x
= 2 cos³ x - cos x - 2 cos x (1 - cos² x)
= 2 cos³ x - cos x - 2 cos x + 2 cos³ x
= 4 cos³ x - 3 cos x (terbukti)
3.
a. 2 sin 75° cos 75° = sin 2(75°) = sin 150° = ½
b. ½ - sin² 15°
= ½ - {1 - cos 2(15°)} / 2
= ½ - ½ + ½ cos 30°
= ½ cos 30°
= ¼√3
4.tan α = ½..............cos β = ¼
.............................tan β = √15
(a) tan 2α
= 2 tan α/(1 - tan²α)
= 2 (½)/(1 - (½)²)
= 1/(1-¼)
= 4/3
(b) tan 2β
= 2 tan β/(1 - tan²β)
= 2 √15/(1- (√15)²)
= 2 √15/(1 - 15)
= 2 √15/-14
= -√15/7
(c) tan (2α + β)
= (tan 2α + tan β)/(1 - tan 2α tan β)
= (4/3 + √15)/(1 - (4/3 * √15)
(4 + 3√15)/3
= --------------
1 - 4√15/3
(4 + 3√15)/3
= ---------------
(3 - 4√15)/3
4 + 3√15
= -------------
3 - 4√15
(d) tan (α - 2β)
= (tan α - tan2β)/(1 + tan α tan2β)
= (½ -√15/7)/(1 + ½ * (-√15/7))
(7 - 2√15)/14
= ----------------------
1 + -√15/14
(7 - 2√15)/14
= ----------------------
(14 -√15)/14
7 - 2√15
= ----------------------
14 -√15
.............................tan β = √15
(a) tan 2α
= 2 tan α/(1 - tan²α)
= 2 (½)/(1 - (½)²)
= 1/(1-¼)
= 4/3
(b) tan 2β
= 2 tan β/(1 - tan²β)
= 2 √15/(1- (√15)²)
= 2 √15/(1 - 15)
= 2 √15/-14
= -√15/7
(c) tan (2α + β)
= (tan 2α + tan β)/(1 - tan 2α tan β)
= (4/3 + √15)/(1 - (4/3 * √15)
(4 + 3√15)/3
= --------------
1 - 4√15/3
(4 + 3√15)/3
= ---------------
(3 - 4√15)/3
4 + 3√15
= -------------
3 - 4√15
(d) tan (α - 2β)
= (tan α - tan2β)/(1 + tan α tan2β)
= (½ -√15/7)/(1 + ½ * (-√15/7))
(7 - 2√15)/14
= ----------------------
1 + -√15/14
(7 - 2√15)/14
= ----------------------
(14 -√15)/14
7 - 2√15
= ----------------------
14 -√15
sudut | 0' | 30' | 45' | 60' | 90' |
---|---|---|---|---|---|
sin
|
0
|
1/2
|
1/2 √2
|
1/2√3
|
1
|
cos
|
1
|
1/2√3
|
1/2 √2
|
1/2
|
0
|
tan
|
0
|
1/√3
|
1
|
√3
|
tdk trdfnsi
|
csc
|
tdk trdfnsi
|
2
|
√2
|
2/3√3
|
1
|
sec
|
1
|
2/3√3
|
√2
|
2
|
tdk trdfnsi
|
cot
|
tdk trdfnsi
|
√3
|
1
|
√3/3
|
0
|
0 Response to "tabel triogonomtri"
Post a Comment